2 research outputs found

    New criteria on global Mittag-Leffler synchronization for Caputo-type delayed Cohen-Grossberg Inertial Neural Networks

    Get PDF
    Our focus of this paper is on global Mittag-Leffler synchronization (GMLS) of the Caputo-type Inertial Cohen-Grossberg Neural Networks (ICGNNs) with discrete and distributed delays. This model takes into account the inertial term as well as the two types of delays, which greatly reduces the conservatism with respect to the model. A change of variables transforms the 2β 2\beta order inertial frame into β \beta order ordinary frame in order to deal with the effect of the inertial term. In the following steps, two novel types of delay controllers are designed for the purpose of reaching the GMLS. In conjunction with the novel controllers, utilizing differential mean-value theorem and inequality techniques, several criteria are derived to determine the GMLS of ICGNNs within the framework of Caputo-type derivative and calculus properties. At length, the feasibility of the results is further demonstrated by two simulation examples

    New results of global Mittag-Leffler synchronization on Caputo fuzzy delayed inertial neural networks

    Get PDF
    This article is devoted to discussing the problem of global Mittag-Leffler synchronization (GMLS) for the Caputo-type fractional-order fuzzy delayed inertial neural networks (FOFINNs). First of all, both inertial and fuzzy terms are taken into account in the system. For the sake of reducing the influence caused by the inertia term, the order reduction is achieved by the measure of variable substitution. The introduction of fuzzy terms can evade fuzziness or uncertainty as much as possible. Subsequently, a nonlinear delayed controller is designed to achieve GMLS. Utilizing the inequality techniques, Lyapunov’s direct method for functions and Razumikhin theorem, the criteria for interpreting the GMLS of FOFINNs are established. Particularly, two inferences are presented in two special cases. Additionally, the availability of the acquired results are further confirmed by simulations
    corecore